
CS3485
Deep Learning for Computer Vision

Lec 4: Optimization in Deep Learning

Announcements

■ Labs:
● Lab 1 is due today at 11:59pm.
● Lab 2 will be released this afternoon (report in latex, mandatory work in pairs).

■ How to succeed in the scientific lab reports:
● Write a concise report: Introduction, Methodology, Results, Discussion and Conclusion sections!
● Explain what you want to study in the report and why this may be interesting to the reader (this

can be done in the introduction).
● In Methodology, you can: (1) Explain what experiments are taking place, (2) why you think they

are relevant, (3) perhaps some background on the theory
● In Results, you should (1) specify the parameters of your experiments (enough stuff so that

another student could run them), (2) add plots and tables of your results.
● In Discussion, you should interpret your results to the reader.
● In Conclusion, you draw conclusions about what you discussed!

■ Quiz at the end of the lecture

(Tentative) Lecture Roadmap

Basics of Deep Learning

Deep Learning and Computer Vision in Practice

Intro to Object
Detection

Fast Object
Detection

Intro to Image
Segmentation

Autoencoders Advanced GANs

Applications of Detection
and Segmentation

Image Generation
with GANs

The Attention
Mechanism

Transformers
and ChatGPT

Intro to
Computer Vision

Linear Classifiers and
Perceptron

Multilayer Perceptron Pytorch I – MLPs Convolutional Neural
Networks

Optimization
in Deep Learning

Pytorch II – Images and
Regularization

Data Augmentation
and Deep CNNs

Inception Net and
what CNNs learn

Transfer Learning and
Residual Nets

Adversarial Examples
and Self-supervision

Intro to
MLOps

Image Generation
by Prompt

Misc.
Topics

Finding the best weights

■ Previously, we saw that we can learn the weights
of a simple perceptron using the Perceptron
Algorithm.

■ We can extend that to multiclasses, by using
multiple perceptron units and training each one
separately.

■ However, when we add the softmax layer, or add
hidden layers, or changed the activation functions,
the perceptron algorithm is not helpful anymore.

■ Today we’ll see how to find the weights of general
neural networks using optimization!

■ Before that, we’ll see how to perform Gradient
Descent, a core method in AI!

Loss minimization

■ We saw that a Multilayer Perceptron classifies a data point x into a class y using:

where NNθ is a shorthand notation for the whole neural network as a function and θ
represents the weights W0, W1, …, WL in it.

■ Since we want to do supervised learning, we have a set of n points x(1), …, x(n) in D
dimensions, each with a class y(1), …, y(n), of K different classes.

■ We can now assess NNθ at classifying the points in our dataset via the average loss:

■ Naturally, we’d like to find best θ, i.e, those that minimize L(θ).
■ Which means that learning in Deep Learning is “just” an optimization problem.

■ To minimize a differentiable function* f(x) one can use Gradient Descent (GD), which
starting from some x0, it finds x1 such that f(x1) is lower than f(x2), and then repeats.

■ It uses the derivative of f , defined as df/dx, to check its slope at each point to know
where to go next.

■ GD works just like a climber who wants to quickly go down a mountain:
● He first steps around where he “feels” the slope of his location,
● Then decides to take the direction where the slope is the steepest,
● After that he walks a step on that direction.
● He then repeats the process until he is at the bottom of the mountain.

Minimization Techniques

* We’ll work on the general case for now and get back to Neural Networks/Deep Learning later.

Gradient Descent in 1D

x0

f(x)

Initial
value of f

Desired final value
of f (minimum)

■ With this definition, the gradient descent
algorithm in 1D is very simple:

1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.
Starting

point

Gradient Descent in 1D

x0

f(x)

Slope

■ With this definition, the gradient descent
algorithm in 1D is very simple:

1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.

Gradient Descent in 1D

x0 x1

f(x)
■ With this definition, the gradient descent

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.

Gradient Descent in 1D

x0 x1 x2

f(x)
■ With this definition, the gradient descent

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.

Gradient Descent in 1D

x0 x1 x2 x3

f(x)
■ With this definition, the gradient descent

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.

Gradient Descent in 1D

x0 x1 x2 x3 x4

f(x)
■ With this definition, the gradient descent

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.

Gradient Descent in 1D

x0 x1 x2 x3 x4x5

f(x)
■ With this definition, the gradient descent

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.

■ Unfortunately, GD doesn’t always find the best x, the global minimum.
■ Depending on where it is initialized, it output two possible suboptimal solutions: a local

minimum or a saddle point.

When Gradient descent is suboptimal

Three different initializations

xa xb xc

f(x)

■ Unfortunately, GD doesn’t always find the best x, the global minimum.
■ Depending on where it is initialized, it output two possible suboptimal solutions: a local

minimum or a saddle point.

When Gradient descent is suboptimal

xb xc

Only one run reached the lowest value for f

xa

f(x)

■ Unfortunately, GD doesn’t always find the best x, the global minimum.
■ Depending on where it is initialized, it output two possible suboptimal solutions: a local

minimum or a saddle point.

When Gradient descent is suboptimal

Suboptimal solution:
Local Minimum Suboptimal solution:

Saddle Point

Optimal solution:
Global Minimum

Note how all three solutions have zero slope.

xb xcxa

f(x)

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

How about more dimensions?

Same
function seen
from above

f(x1 ,x2) = x1
2+x2

2

How about more dimensions?

Initial position

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2

How about more dimensions?

Gradient Vector

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2

How about more dimensions?

Step and new
position

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2

How about more dimensions?

Repeat until
||∇f || = 0

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2

How about more dimensions?

Repeat until
||∇f || = 0

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2

How about more dimensions?

Repeat until
||∇f || = 0

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2

How about more dimensions?

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

How about more dimensions?

Trajectory of x

■ What we did for 1D can be readily
generalized to functions f(x1, ... ,xD) in D
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables.
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the
gradient of f.

■ The principle is the same as in 1D, but now
we have a direction in D dimensions to
follow: the negative of the function’s
gradient,-∇xf(x).

■ Also, just like in 1D, gradient descent can get stuck in multidimensional suboptimal
solutions and miss the global minimum:

■ In fact, one can show that these points are prevalent in Deep Learning loss surfaces.
■ How can we address this issue?

When Gradient Descent is suboptimal

Saddle point Local Minimum

Global Minimum

Exercise (In pairs)

■ What would be the effect of very large or very small
learning rates 𝜂 in gradient descent for an easy optimization
problem (like the parabola on the right)?

■ Implement gradient descent for a function that you know
the derivative of and its global minimum (like f(x) = x2). Set
𝜂 to 0.1 and make sure to print the value of the function as
you do your GD interactions. Hint: create two Python
functions f(x) and df(x). Now try 𝜂 equal to 0.01, 1, 100,
1000. What do you observe? What does this tell you about
weakness of gradient descent?

Going back to Neural Networks

■ As a recap, in Neural Networks our goal is to find a set of weights θ* defined by:

which reads as “θ* is the value for θ that minimizes L(θ) over all possible θ” and where:

■ In GD, we need to compute the gradient of L(θ), which is:

■ That is, as we search for θ*, we have to compute evaluate n gradients at each GD step.
■ One problem: In modern datasets, n > 100000!

■ Ok, let’s summarize our problems with GD so far:
1. GD is prone to local minima and saddle points,
2. It is very computationally expensive to compute a step of GD in modern Neural Networks.

■ We’ll try to solve both problems with the same solution: randomness!
■ First, to make things easier, let’s use the following shorthand notation:

■ That is, the gradient vector ∇θL(θ) is just an average sum of many vectors ∇θLi(θ)!

Going back to Neural Networks

Full Gradient Only some terms
■ In other words: we can

compute the average of a
few ∇θLi(θ) and the
result won’t be too far off
from the full gradient
∇θL(θ).

 Legend:

∇θL(θ)
∇θLi(θ)
θ before step

θ after step

Stochastic Gradient Descent

■ If we randomly choose the datapoints to compute these few ∇θLi(θ) vectors, we are
now dealing with Stochastic* Gradient Descent (SGD).

■ Since we won’t be using the whole dataset to compute one step of SGD anymore, we
need to introduce a bit more of deep learning linguo:
● The set of chosen datapoints used to compute one step of SD is called mini-batch (or just

batch**). The batches don’t need to be exactly of the same size.

● SGD will go over each batch and then restart. An epoch is over when it has finished
going over all batches (and therefore all data points) once.

* In most contexts, “stochastic” simply means “random”.

Full dataset Three (deterministic) mini-batches

** “Batch Gradient Descent” is sometimes used to refer to GD using all datapoints.

Stochastic Gradient Descent

■ If we randomly choose the datapoints to compute these few ∇θLi(θ) vectors, we are
now dealing with Stochastic* Gradient Descent (SGD).

■ Since we won’t be using the whole dataset to compute one step of SGD anymore, we
need to introduce a bit more of deep learning linguo:
● The set of chosen datapoints used to compute one step of SD is called mini-batch (or just

batch**). The batches don’t need to be exactly of the same size.

● SGD will go over each batch and then restart. An epoch is over when it has finished
going over all batches (and therefore all data points) once.

* In most contexts, “stochastic” simply means “random”.

Full dataset Three (random) mini-batches

** “Batch Gradient Descent” is sometimes used to refer to GD using all datapoints.

GD vs SGD

To compute a full
gradient step, all data
points are taken into

account.

MLP

Compute ∇θLi(θ)

Average to
get ∇θL(θ)

Update weights by taking on step in -∇θL(θ)

ŷ(1), … , ŷ(8) y(1), … , y(8)x(1), … , x(8)

Loss surface

■ In normal gradient descent, we need to compute all datapoints gradients (eight in the
example below) to make one step.

GD vs SGD

To compute a full
gradient step, all data
points are taken into

account.

MLP

Compute ∇θLi(θ)

Average to
get ∇θL(θ)

Update weights by taking one step in the direction -∇θL(θ)

ŷ(1), … , ŷ(8) y(1), … , y(8)x(1), … , x(8)

Loss surface

■ In normal gradient descent, we need to compute all datapoints gradients (eight in the
example below) to make one step.

GD vs SGD

In mini-batch SGD, only a
few random datapoints

are used to compute the
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

1st batch Full gradient
step

Loss surface

■ In stochastic gradient descent, we only compute the gradients respective to the
mini-batches’ points to make a step.

Update weights by taking one step in the direction -∇θL(θ)

GD vs SGD

In mini-batch SGD, only a
few random datapoints

are used to compute the
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

1st batch Full gradient
step

Loss surface

■ In stochastic gradient descent, we only compute the gradients respective to the
mini-batches’ points to make a step.

Update weights by taking one step in the direction -∇θL(θ)

GD vs SGD

In mini-batch SGD, only a
few random datapoints

are used to compute the
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

2nd batch Full gradient
step

Loss surface

■ The next mini-batch’s step will start from the location found by the previous step.

Update weights by taking one step in the direction -∇θL(θ)

GD vs SGD

In mini-batch SGD, only a
few random datapoints

are used to compute the
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

3rd batch Full gradient
step

SDG after an
epoch

Loss surface

■ And we repeat that for the next batch and so on until we’re done with one epoch. Note
that SGD made more progress than GD using each
datapoint only once.

Update weights by taking one step in the direction -∇θL(θ)

Analysing SGD

■ SGD definitely makes the gradient computation quicker, but how about the local minima
and saddle points?

■ Well, the following recent paper seems convenient to answer this question:

■ Why does this happen? In simple english, it happened because SGD can be seen as
adding noise to every step a full gradient would take.

■ That means that it tries out directions that GD would not take, allowing it to explore the
loss surface better and to hopefully “fall into” the global minimum region.

■ This also means that SGD also makes more steps per datapoint than GD, due to this
exploration feature.

https://arxiv.org/abs/1902.04811v1

■ This behaviour is even more explicit when we change the batch size:
● With a large batch size, SGD makes fewer steps per epoch and each step is more expensive.

On the other hand, the full path is more stable.
● With a smaller batch size, SGD explore the loss surface better and each step becomes cheaper.

On the other hand, the path may be too erratic and SGD may take long to converge.

■ One solution to this issue is to use smaller step sizes (which may make the convergence
even slower), other is to add momentum.

Analysing SGD

GD SGD with large batch size SGD with small batch size

Adding Momentum

■ Adding momentum means using previous steps (gradient directions) to compute the
current direction to go.

■ Intuitively, it hinders the walk from making very sharp turns from one step to the next.
■ Mathematically, we compute a step of SGD with momentum as follows:

where β is called the momentum parameter (or simply momentum).
■ In practice, adding some momentum makes

SGD’s path more stable/smooth*, leading to
quicker convergences.

■ However, adding too much momentum can
also hurt convergence*.

* Check out this website and try adding momentum to GD yourself.

https://distill.pub/2017/momentum/

Adding adaptive learning rates

■ The final trick to improve SGD is to use adaptive learning rates (ALR), i.e. change the
learning rates according to the “intensity” of previous steps.

■ Mathematically, the new gradient descent formula would look like the following:

where 𝜖 is just a small number added to the numerator to avoid division by zero.
■ Since the notation ||∇f(x)||2 in the numerator represents a gradient magnitude, the

intuition behind the whole formula above is: the larger the previous gradients/steps
were, the smaller the next steps will be.

■ Most practical modern implementations of SGD for deep learning nowadays use ALR
with slight changes, but keeping the same intuition.

Modern Optimizers

■ The literature offers many possible optimizers to find best the neural network weights.
■ All of them employ one or more of the three main techniques: Stochasticity, Momentum

and Adaptive Learning Rates.
■ Below, we see how some of these optimizers* are able to escape saddle points.

* NAG (Nestorov Accelerated Grad.) is a variation of momentum and Adagrad, Adadelta and RMSprop are different implementations of ALR.

■ In practice, Deep Learning
practitioners tend to use an
optimizer called ADAM
(Adaptive Moment Estimation),
since it uses the three
techniques above in its
algorithm**.

** Here’s two websites where you can compare ADAM’s performance to SGD’s, Momentum’s and RMSprop’s.

https://observablehq.com/@emiliendupont/optimization-on-rastrigin-function
https://observablehq.com/@emiliendupont/optimization-on-rosenbrock-function

Chain rule and Backpropagation

■ After seeing all this theory of optimization, we only miss one thing: how can we apply it
to the neural networks we saw before???

■ Well, the first step is to write out the function we need to minimize.
■ If we are using cross-entropy loss, this is the average loss function for our network:

■ Now we “just” need to compute the gradient of L(θ) with respect to θ! Although not
straightforward, one just has to use the Chain Rule from calculus.

■ Say that you have two differentiable functions f and g. Let y = f(g(x)) and u = g(x) for a
value x. Then we have that:

Chain rule and Backpropagation

■ Example: if f(x) = x2 and g(x) = 3x3 + 2, then the derivative of y = f(g(x)) (call u = g(x)):

■ Using a similar approach one can consider y = f1(f2(f3…fn(x)...)). Let u1 = f2(f3…fn(x)...),
u2 = (f3…fn(x)...) and so on. Then we have that:

■ For (simple) neural networks, one only has to apply the chain rule to get the weight
updates*.

■ In that case the first step it to “see” our loss definition as a series of composed function
such as y = f1(f2(f3…fn(x)...)).

* Mathematically speaking, the ReLU activation is not differentiable, which should complicate things. In practice, however, the deep
learning community simply simply disregards this issue. This paper goes in detail about this issue.

https://proceedings.neurips.cc/paper/2018/file/142c65e00f4f7cf2e6c4c996e34005df-Paper.pdf

Chain rule and Backpropagation

■ To make things simple, let’s consider a network of just one hidden layer, the loss on only
one datapoint (called x with true label y) and that we just want to optimize W0. Then:

■ Let u1(z) = -yTz, u2(z) = log(z), u3(z) = softmax(z), u4(z) = W1z, u5(z) = a(z), u6(z) = zTx,
where z is a vector or a matrix. Then have that u0 = u1(u2(u3(u4(u5(u6(W0)))))) and that

■ Now things are much easier: for example, using matrix calculus*, we have du1/dz = -y,
du4(z)/dz = W1 and so on. Remember that one has to compute Jacobians sometimes here.

■ Note that you’d need to do something similar to W1 to optimize it too.

* Here, you can find more refreshing information on derivatives with respect to vectors and matrices

https://web.mit.edu/course/14/14.380/www/handouts/matrixcalculus.pdf

Video: Go AlphaGo!

http://www.youtube.com/watch?v=53YLZBSS0cc

