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Lec 4: Optimization in Deep Learning



Announcements

■ Labs:
● Lab 1 is due today at 11:59pm.
● Lab 2 will be released this afternoon (report in latex, mandatory work in pairs).

■ How to succeed in the scientific lab reports:
● Write a concise report: Introduction, Methodology, Results, Discussion and Conclusion sections!
● Explain what you want to study in the report and why this may be interesting to the reader (this 

can be done in the introduction).
● In Methodology, you can: (1) Explain what experiments are taking place, (2) why you think they 

are relevant, (3) perhaps some background on the theory
● In Results, you should (1) specify the parameters of your experiments (enough stuff so that 

another student could run them), (2) add plots and tables of your results.
● In Discussion, you should interpret your results to the reader. 
● In Conclusion, you draw conclusions about what you discussed!

■ Quiz at the end of the lecture
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Finding the best weights 

■ Previously, we saw that we can learn the weights 
of a simple perceptron using the Perceptron 
Algorithm.

■ We can extend that to multiclasses, by using 
multiple perceptron units and training each one 
separately. 

■ However, when we add the softmax layer, or add 
hidden layers, or changed the activation functions, 
the perceptron algorithm is not helpful anymore.

■ Today we’ll see how to find the weights of general 
neural networks using optimization!

■ Before that, we’ll see how to perform Gradient 
Descent, a core method in AI!



Loss minimization

■ We saw that a Multilayer Perceptron classifies a data point x into a class y using:

where NNθ is a shorthand notation for the whole neural network as a function and θ 
represents the weights W0, W1, …, WL in it.

■ Since we want to do supervised learning, we have a set of n points x(1), …, x(n) in D 
dimensions, each with a class y(1), …, y(n), of K different classes.

■ We can now assess NNθ at classifying the points in our dataset via the average loss:

■ Naturally, we’d like to find best θ, i.e, those that minimize L(θ). 
■ Which means that learning in Deep Learning is “just” an optimization problem.



■ To minimize a differentiable function* f(x) one can use Gradient Descent (GD), which 
starting from some x0, it finds x1 such that f(x1) is lower than f(x2), and then repeats.

■ It uses the derivative of f , defined as df/dx, to check its slope at each point to know 
where to go next.

■ GD works just like a climber who wants to quickly go down a mountain:
● He first steps around where he “feels” the slope of his location,
● Then decides to take the direction where the slope is the steepest,
● After that he walks a step on that direction.
● He then repeats the process until he is at the bottom of the mountain.

Minimization Techniques

* We’ll work on the general case for now and get back to Neural Networks/Deep Learning later.



Gradient Descent in 1D

x0

f(x)

Initial 
value of f 

Desired final value 
of f  (minimum)

■ With this definition, the gradient descent 
algorithm in 1D is very simple:

1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.
Starting 

point 
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x0 x1 x2
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■ With this definition, the gradient descent 
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Gradient Descent in 1D

x0 x1 x2 x3

f(x)
■ With this definition, the gradient descent 

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.



Gradient Descent in 1D

x0 x1 x2 x3 x4

f(x)
■ With this definition, the gradient descent 

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.



Gradient Descent in 1D

x0 x1 x2 x3 x4x5

f(x)
■ With this definition, the gradient descent 

algorithm in 1D is very simple:
1. Pick a random starting point x0,
2. Repeat for t = 0, 1, 2, … until |grad|< 𝜖**

a. Compute grad = df(xt)/dx
b. Update x as in xt+1 = xt - 𝜂 × grad

** 𝜖 (“epsilon”) is just a small number set by the user.

■ We use this intuition to mathematically formulate our minimizer for functions in 1D:

where 𝜂 (called step size or learning rate) is a constant*. This equation simply says:
● If you are at xt, the next point you should go to is on the opposite direction of the slope of f at xt.
● Then walk a step of size proportional to how steep that slope is in the direction.

* 𝜂 reads like “eta”.



■ Unfortunately, GD doesn’t always find the best x, the global minimum.
■ Depending on where it is initialized, it output two possible suboptimal solutions: a local 

minimum or a saddle point. 

When Gradient descent is suboptimal

Three different initializations

xa xb xc

f(x)



■ Unfortunately, GD doesn’t always find the best x, the global minimum.
■ Depending on where it is initialized, it output two possible suboptimal solutions: a local 

minimum or a saddle point. 

When Gradient descent is suboptimal

xb xc

Only one run reached the lowest value for f

xa

f(x)



■ Unfortunately, GD doesn’t always find the best x, the global minimum.
■ Depending on where it is initialized, it output two possible suboptimal solutions: a local 

minimum or a saddle point. 

When Gradient descent is suboptimal

Suboptimal solution: 
Local Minimum Suboptimal solution: 

Saddle Point

Optimal solution: 
Global Minimum

Note how all three solutions have zero slope.

xb xcxa

f(x)



■ What we did for 1D can be readily 
generalized to functions f(x1, ... ,xD) in D 
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables. 
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the 
gradient of f.

■ The principle is the same as in 1D, but now 
we have a direction in D dimensions to 
follow: the negative of the function’s 
gradient,-∇xf(x).

How about more dimensions?

Same     
function seen 
from above

f(x1 ,x2) = x1
2+x2

2



How about more dimensions?

Initial position
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How about more dimensions?

Gradient Vector

■ What we did for 1D can be readily 
generalized to functions f(x1, ... ,xD) in D 
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables. 
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where ∇xf = [df/dx1, … , df/dxD]T is the 
gradient of f.

■ The principle is the same as in 1D, but now 
we have a direction in D dimensions to 
follow: the negative of the function’s 
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2



How about more dimensions?

Step and new 
position

■ What we did for 1D can be readily 
generalized to functions f(x1, ... ,xD) in D 
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables. 
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the 
gradient of f.

■ The principle is the same as in 1D, but now 
we have a direction in D dimensions to 
follow: the negative of the function’s 
gradient,-∇xf(x).

f(x1 ,x2) = x1
2+x2

2



How about more dimensions?

Repeat until 
||∇f || = 0
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How about more dimensions?

■ What we did for 1D can be readily 
generalized to functions f(x1, ... ,xD) in D 
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables. 
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the 
gradient of f.

■ The principle is the same as in 1D, but now 
we have a direction in D dimensions to 
follow: the negative of the function’s 
gradient,-∇xf(x).



How about more dimensions?

Trajectory of x

■ What we did for 1D can be readily 
generalized to functions f(x1, ... ,xD) in D 
dimensions.

■ Call x = [x1, ... ,xD]T the vector of variables. 
Then, the Gradient Descent formula is now:

where ∇xf = [df/dx1, … , df/dxD]T is the 
gradient of f.

■ The principle is the same as in 1D, but now 
we have a direction in D dimensions to 
follow: the negative of the function’s 
gradient,-∇xf(x).



■ Also, just like in 1D, gradient descent can get stuck in multidimensional suboptimal 
solutions and miss the global minimum:

■ In fact, one can show that these points are prevalent in Deep Learning loss surfaces.
■ How can we address this issue?

When Gradient Descent is suboptimal

Saddle point Local Minimum

Global Minimum



Exercise (In pairs)

■ What would be the effect of very large or very small 
learning rates 𝜂 in gradient descent for an easy optimization 
problem (like the parabola on the right)? 

■ Implement gradient descent for a function that you know 
the derivative of and its global minimum (like f(x) = x2). Set 
𝜂 to 0.1 and make sure to print the value of the function as 
you do your GD interactions. Hint: create two Python 
functions f(x) and df(x). Now try 𝜂 equal to 0.01, 1, 100, 
1000. What do you observe? What does this tell you about 
weakness of gradient descent?



Going back to Neural Networks

■ As a recap, in Neural Networks our goal is to find a set of weights θ* defined by:

which reads as “θ* is the value for θ that minimizes L(θ) over all possible θ” and where:

■ In GD, we need to compute the gradient of L(θ), which is:

■ That is, as we search for θ*, we have to compute evaluate n gradients at each GD step.
■ One problem: In modern datasets, n > 100000!



■ Ok, let’s summarize our problems with GD so far:
1. GD is prone to local minima and saddle points,
2. It is very computationally expensive to compute a step of GD in modern Neural Networks.

■ We’ll try to solve both problems with the same solution: randomness!
■ First, to make things easier, let’s use the following shorthand notation: 

■ That is, the gradient vector ∇θL(θ) is just an average sum of many vectors ∇θLi(θ)!

Going back to Neural Networks

Full Gradient Only some terms
■ In other words: we can 

compute the average of a 
few ∇θLi(θ) and the 
result won’t be too far off 
from the full gradient 
∇θL(θ).

    Legend:

∇θL(θ)
∇θLi(θ)
θ before step

θ after step



Stochastic Gradient Descent

■ If we randomly choose the datapoints to compute these few ∇θLi(θ) vectors, we are 
now dealing with Stochastic* Gradient Descent (SGD).

■ Since we won’t be using the whole dataset to compute one step of SGD anymore, we 
need to introduce a bit more of deep learning linguo:
● The set of chosen datapoints used to compute one step of SD is called mini-batch (or just 

batch**). The batches don’t need to be exactly of the same size.

● SGD will go over each batch and then restart. An epoch is over when it has finished 
going over all batches (and therefore all data points) once.

* In most contexts, “stochastic” simply means “random”.

Full dataset Three (deterministic) mini-batches

** “Batch Gradient Descent” is sometimes used to refer to GD using all datapoints.



Stochastic Gradient Descent

■ If we randomly choose the datapoints to compute these few ∇θLi(θ) vectors, we are 
now dealing with Stochastic* Gradient Descent (SGD).

■ Since we won’t be using the whole dataset to compute one step of SGD anymore, we 
need to introduce a bit more of deep learning linguo:
● The set of chosen datapoints used to compute one step of SD is called mini-batch (or just 

batch**). The batches don’t need to be exactly of the same size.

● SGD will go over each batch and then restart. An epoch is over when it has finished 
going over all batches (and therefore all data points) once.

* In most contexts, “stochastic” simply means “random”.

Full dataset Three (random) mini-batches

** “Batch Gradient Descent” is sometimes used to refer to GD using all datapoints.



GD vs SGD

To compute a full 
gradient step, all data 
points are taken into 

account.

MLP

Compute ∇θLi(θ)

Average to 
get ∇θL(θ)

Update weights by taking on step in -∇θL(θ)

ŷ(1), … , ŷ(8) y(1), … , y(8)x(1), … , x(8)

Loss surface

■ In normal gradient descent, we need to compute all datapoints gradients (eight in the 
example below) to make one step.



GD vs SGD

To compute a full 
gradient step, all data 
points are taken into 

account.

MLP

Compute ∇θLi(θ)

Average to 
get ∇θL(θ)

Update weights by taking one step in the direction -∇θL(θ)

ŷ(1), … , ŷ(8) y(1), … , y(8)x(1), … , x(8)

Loss surface

■ In normal gradient descent, we need to compute all datapoints gradients (eight in the 
example below) to make one step.



GD vs SGD

In mini-batch SGD, only a 
few random datapoints 

are used to compute the 
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

1st batch Full gradient 
step

Loss surface

■ In stochastic gradient descent, we only compute the gradients respective to the 
mini-batches’ points to make a step.

Update weights by taking one step in the direction -∇θL(θ)



GD vs SGD

In mini-batch SGD, only a 
few random datapoints 

are used to compute the 
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

1st batch Full gradient 
step

Loss surface

■ In stochastic gradient descent, we only compute the gradients respective to the 
mini-batches’ points to make a step.
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GD vs SGD

In mini-batch SGD, only a 
few random datapoints 

are used to compute the 
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

2nd batch Full gradient 
step

Loss surface

■ The next mini-batch’s step will start from the location found by the previous step. 

Update weights by taking one step in the direction -∇θL(θ)



GD vs SGD

In mini-batch SGD, only a 
few random datapoints 

are used to compute the 
gradient.

Compute ∇θLi(θ)

Average to get ∇θL(θ)

MLP

3rd batch Full gradient 
step

SDG after an 
epoch

Loss surface

■ And we repeat that for the next batch and so on until we’re done with one epoch. Note 
that SGD made more progress than GD using each                                                            
datapoint only once.

Update weights by taking one step in the direction -∇θL(θ)



Analysing SGD

■ SGD definitely makes the gradient computation quicker, but how about the local minima 
and saddle points? 

■ Well, the following recent paper seems convenient to answer this question:

■ Why does this happen? In simple english, it happened because SGD can be seen as 
adding noise to every step a full gradient would take. 

■ That means that it tries out directions that GD would not take, allowing it to explore the 
loss surface better and to hopefully “fall into” the global minimum region.

■ This also means that SGD also makes more steps per datapoint than GD, due to this 
exploration feature.

https://arxiv.org/abs/1902.04811v1


■ This behaviour is even more explicit when we change the batch size:
● With a large batch size, SGD makes fewer steps per epoch and each step is more expensive. 

On the other hand, the full path is more stable.
● With a smaller batch size, SGD explore the loss surface better and each step becomes cheaper. 

On the other hand, the path may be too erratic and SGD may take long to converge.

■ One solution to this issue is to use smaller step sizes (which may make the convergence 
even slower), other is to add momentum.

Analysing SGD

GD SGD with large batch size SGD with small batch size



Adding Momentum

■ Adding momentum means using previous steps (gradient directions) to compute the 
current direction to go. 

■ Intuitively, it hinders the walk from making very sharp turns from one step to the next.
■ Mathematically, we compute a step of SGD with momentum as follows:

where β is called the momentum parameter (or simply momentum).
■ In practice, adding some momentum makes 

SGD’s path more stable/smooth*, leading to 
quicker convergences.

■ However, adding too much momentum can 
also hurt convergence*.

* Check out this website and try adding momentum to GD yourself.

https://distill.pub/2017/momentum/


Adding adaptive learning rates

■ The final trick to improve SGD is to use adaptive learning rates (ALR), i.e. change the 
learning rates according to the “intensity” of previous steps.

■ Mathematically, the new gradient descent formula would look like the following:

where 𝜖 is just a small number added to the numerator to avoid division by zero.
■ Since the notation ||∇f(x)||2 in the numerator represents a gradient magnitude, the 

intuition behind the whole formula above is: the larger the previous gradients/steps 
were, the smaller the next steps will be.

■ Most practical modern implementations of SGD for deep learning nowadays use ALR 
with slight changes, but keeping the same intuition.



Modern Optimizers

■ The literature offers many possible optimizers to find best the neural network weights.
■ All of them employ one or more of the three main techniques: Stochasticity, Momentum 

and Adaptive Learning Rates.
■ Below, we see how some of these optimizers* are able to escape saddle points.

* NAG (Nestorov Accelerated Grad.) is a variation of momentum and Adagrad, Adadelta and RMSprop are different implementations of ALR. 

■ In practice, Deep Learning 
practitioners tend to use an 
optimizer called ADAM 
(Adaptive Moment Estimation), 
since it uses the three 
techniques above in its 
algorithm**.

** Here’s two websites where you can compare ADAM’s performance to SGD’s, Momentum’s and RMSprop’s. 

https://observablehq.com/@emiliendupont/optimization-on-rastrigin-function
https://observablehq.com/@emiliendupont/optimization-on-rosenbrock-function


Chain rule and Backpropagation

■ After seeing all this theory of optimization, we only miss one thing: how can we apply it 
to the neural networks we saw before???

■ Well, the first step is to write out the function we need to minimize.
■ If we are using cross-entropy loss, this is the average loss function for our network: 

■ Now we “just” need to compute the gradient of L(θ) with respect to θ! Although not 
straightforward, one just has to use the Chain Rule from calculus. 

■ Say that you have two differentiable functions f and g. Let y = f(g(x)) and u = g(x) for a 
value x. Then we have that:



Chain rule and Backpropagation

■ Example: if f(x) = x2 and g(x) = 3x3 + 2, then the derivative of y = f(g(x)) (call u = g(x)):

■ Using a similar approach one can consider y = f1(f2(f3…fn(x)...)). Let u1 = f2(f3…fn(x)...), 
u2 = (f3…fn(x)...) and so on. Then we have that:

■ For (simple) neural networks, one only has to apply the chain rule to get the weight 
updates*. 

■ In that case the first step it to “see” our loss definition as a series of composed function 
such as y = f1(f2(f3…fn(x)...)).  

* Mathematically speaking, the ReLU activation is not differentiable, which should complicate things. In practice, however, the deep 
learning community simply simply disregards this issue. This paper goes in detail about this issue.

https://proceedings.neurips.cc/paper/2018/file/142c65e00f4f7cf2e6c4c996e34005df-Paper.pdf


Chain rule and Backpropagation

■ To make things simple, let’s consider a network of just one hidden layer, the loss on only 
one datapoint (called x with true label y) and that we just want to optimize W0. Then:

■ Let u1(z) = -yTz, u2(z) = log(z), u3(z) = softmax(z), u4(z) = W1z, u5(z) = a(z), u6(z) = zTx, 
where z is a vector or a matrix. Then have that u0 = u1(u2(u3(u4(u5(u6(W0)))))) and that

■ Now things are much easier: for example, using matrix calculus*, we have du1/dz = -y, 
du4(z)/dz = W1 and so on. Remember that one has to compute Jacobians sometimes here.

■ Note that you’d need to do something similar to W1 to optimize it too.

* Here, you can find more refreshing information on derivatives with respect to vectors and matrices

https://web.mit.edu/course/14/14.380/www/handouts/matrixcalculus.pdf


Video: Go AlphaGo!

http://www.youtube.com/watch?v=53YLZBSS0cc

